Remove some demos and stray slides

This commit is contained in:
Jake Howard 2022-11-15 13:33:50 +00:00
parent cbb6d0921e
commit 2deecb2e36
Signed by: jake
GPG key ID: 57AFB45680EDD477
4 changed files with 12 additions and 69 deletions

View file

@ -1,18 +0,0 @@
import cv2
import numpy
cap = cv2.VideoCapture(2)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
_, frame = cap.read()
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
t1 = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 3, 7)
t2 = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 13, 7)
t3 = cv2.adaptiveThreshold(grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 23, 7)
threshed = numpy.concatenate((t1, t2, t3), axis=1)
cv2.imshow('threshed', threshed)
cv2.waitKey(1)

View file

@ -1,14 +0,0 @@
import cv2
cap = cv2.VideoCapture(2)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
while True:
_, frame = cap.read()
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(grey, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('original', frame)
cv2.imshow('thresh', thresh)
cv2.waitKey(1)

View file

@ -72,13 +72,12 @@
</section>
<section data-background-image="https://docs.opencv.org/4.x/singlemarkersthresh.png">
<h2 class="r-fit-text text-shadow">2. Thresholding</h2>
<p class="fragment text-shadow">Demo 🤞</p>
<aside class="notes" data-markdown>
- Images aren't black and white
- This slide is
- Markers _are_
- Black and white!
- Not greyscale
- Not even greyscale
- Much less data to be working with
- Thresholding achieves this
- Naive thresholding based on the entire image
@ -87,30 +86,16 @@
</aside>
</section>
<section>
<section>
<h2 class="r-fit-text">3. Edge Detection</h2>
<aside class="notes" data-markdown>
- Basically "find the squares"
- Marker edges are straight lines
- Filter to find hard edges
- Are neighbouring pixels sufficiently different from eachother?
- Markers are squares
- Well, quadralaterals
- Find collections with 4 sides
</aside>
</section>
<section>
<h2 class="r-fit-text">3a. Contour Refinement</h2>
<aside class="notes" data-markdown>
- Only care about the square (ish) ones
- Get rid of anything else
- Ignore rectangles, too skewed etc
- Remove contours within contours
- Refinement is fast and simple
- Latter stages are more complex
- Exclude now whilst it's easy and cheap
</aside>
</section>
<h2 class="r-fit-text">3. Edge Detection</h2>
<aside class="notes" data-markdown>
- Basically "find the squares"
- Marker edges are straight lines
- Filter to find hard edges
- Are neighbouring pixels sufficiently different from eachother?
- Markers are squares
- Well, quadralaterals
- Find collections with 4 sides
</aside>
</section>
<section data-background-image="https://docs.opencv.org/4.x/singlemarkersoriginal.jpg">
<h2 class="r-fit-text text-shadow">4. <em>Distortion</em></h2>
@ -149,16 +134,6 @@
- Search "Hamming code" for more
</aside>
</section>
<section data-background-image="https://docs.opencv.org/4.x/singlemarkersdetection.jpg">
<h2 class="r-fit-text text-shadow">And done!</h2>
<p class="fragment text-shadow">...Almost</p>
<aside class="notes" data-markdown>
- And that's it
- We can now find markers in a given image
- ... Almost
- But what if we wanted to do a little more?
</aside>
</section>
<section data-background-image="https://docs.opencv.org/4.x/singlemarkersaxes.jpg">
<h2 class="r-fit-text text-shadow">7. Pose Estimation</h2>
<aside class="notes" data-markdown>
@ -178,7 +153,7 @@
</aside>
</section>
<section>
<h2 class="r-fit-text">Another demo 🙏</h2>
<h2 class="r-fit-text">Demo 🙏</h2>
</section>
<section>
<section>